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Abstract 

This paper presents a new method for using cubic interpolating 
splines in a key frame animation system. Three control 
parameters allow the animator to change the tension, continuity, 
and bias of the splines. Each of these three parameters can be 
used for either local or global control. Our technique produces 
a very general class of interpolating cubic splines which includes 
the cardinal splines as a proper subset. 
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1. Introduction 

One of the oldest techniques used in computer animation is 
the automatic generation of inbetweens (intermediate frames) 
based on a set of key frames supplied by the animator [5]. This 
same principle is frequently used in computer assisted 3-D 
animation where camera and object positions are defined only at 
key points in the animation, leaving the calculation of 
intermediate positions to the computer. The straightforward 
linear interpolation algorithm used in many systems produces 
some undesirable side effects which give the animation a 
mechanical look, often referred to as the "computer signature." 
The most objectionable characteristic of this type of animation 
is the lack of smoothness in the motion. The key frames may be 
clearly visible in the animation because of sudden changes in the 
direction of motion (Figure 1). 

key 1 key 3 
[] [] 

• ° 

[] 
key 2 

Figure 1. Discontinuity in direction with linear interpolation 

Discontinuities in the speed of motion may also be visible with 
linear interpolation, for example when the animator requests a 
different number of frames between successive keys (Figure 2). 

[] . . . . . . . . . .  [] . . . . .  [] 
key 1 key 2 key 3 

Figure 2. Discontinuity in speed with linear interpolation 

33 



@SIGGRAPH'84 
i 

A third common problem is distortion, which may occur 
whenever the movement has a rotational component (Figure 3). 

key 1 

[] [] key 2 

Figure 3. Distortion in length when rotation is simulated linearly. 

In view of these serious drawbacks of linear interpolation, a 
number of different methods which produce smoother motion 
have been published. These techniques include P-curves [1], 
skeletons [6], action overlap [11], and moving point constraints 
[9]. All of these techniques require the animator to specify 
additional information other than just the key frames. A 
completely automatic system which uses only the key positions 
supplied by the animator was implemented by one of the authors 
[8]. The approach used there was based on fitting a set of 
interpolating splines through the key positions, resulting in much 
smoother animation than can be produced with linear 
interpolation. 

2. Interpolating Splines 

We assume that each of the objects in the i th key frame in 
a sequence can be described by a collection of points. (As an 
example, the two designated endpoints of the line segment in 
key 1 shown in Figure 3 completely define the segment.) We 
assume that to each point in one key frame there will be a 
corresponding point in all other key frames of a motion 
sequence. (For example, the same two endpoints reappear in 
key 2 of Figure 3 to specify a later position of the Hne 
segment.) These assumptions are not as restrictive as they may 
appear to be. Even quite complicated curved objects can be 
expressed in terms of small numbers of control points using the 
techniques described in, for example, [7]. For the purposes of 
the discussion, wewi l l  fix our attention on one such point, 
designated P~ and referred to as the key position, in the i th key 
frame: 

Pi = ( x i , Y i , Z i )  

(We will carry on the discussion in terms of 3-D animation.) 
Given a sequence of corresponding key positions, 

" , P ~ - I , P ~ , P ~ + 1 ,  " "  

we want to interpolate them using a simple smooth curve. For 
sufficient generality to handle the multi-valued case, all curves 
will be treated parametrically as 

P(s)  = ( x ( s ) , y ( s ) , z ( s ) )  

where s varies from 0 to 1 between each two key frames. Thus, 
we want to find smooth functions x(s) ,  y(s) ,  and z(s)  so that, for 
example, 

P(O) = (x(O),y(O),z(O)) = ( x i , y i , z i )  = Pi 

and 
P(I) = ( x ( l ) , y ( 1 ) , z ( 1 ) )  ~ (xi+|,yi+l,2i+l)  = Pi+l 

on the interval between the i th and i+1 st key frames. The 
positions of the inbetween frames which will correspond to the 
key position in question, then, will be P(s) for 
s = A , 2 . A ,  . . .  1 - -Afor  

t ,  = ! + l  
N~ 

where Ni is the number of inbetweens to be generated between 
the key frame containing Pi and the key frame containing PJ+I. 
Polynomials are a natural choice for the smooth functions 
because of their simplicity, but using a single interpolating 
polynomial of high degree for the entire sequence could result in 
motion which oscillates about the path we expect the animation 
to follow. A more "natural" fit of the key positions can be 
obtained by interpolating them with a cubic spline, a curve 
consisting of a succession of different cubic polynomial segments 
which are joined together with certain continuity constraints. 

Each cubic polynomial extends between two key positions 
and is uniquely defined by four coefficients which we can 
determine from four independent constraints. Two constraints 
are given directly by the interpolation conditions: the spline 
segment must pass through the key positions at the start and the 
end of the interval. This leaves two free constraints which we 
can choose. The choice which defines the most commonly used 
form of cubic spline imposes first and second derivative 
continuity at the keys, but this approach is computationally 
expensive and quite inflexible. Instead, we choose to specify 
tangent vectors at the two adjacent keys to define each spline 
segment. In our notation the tangent vector to the curve we 
wish to construct through key position Pi is given by 

{ d x d y d z )  
Dr =' ~s ' ds ' ds 

NO conditions will be imposed on second derivatives. 

By default, we determine appropriate tangent vectors from 
the geometry of the surrounding keys. This approach can be 
generalized to produce a very flexible class of cubic splines by 
the introduction of control parameters which modify the length 
and direction of the tangent vectors. 

Any cubic polynomial can be expressed as a scaled sum of 
four basis functions. Frequently these functions are taken to be 
the monomials s 3, s 2, s, 1, however, for our purposes the 
Hermi te  interpolation basis funct ions  shown in Figure 4 are 
more useful. 

1 

1 

hi(s) = 2s3 - -3s2+ l  

11/ 
I 1 

h2(s ) = -- 2s 3 + 3s 2 

h3( s  ) = s 3 - - 2 s 2 + s  h4(s  ) = s 3 - - s  2 

Figure 4. Basis functions for Hermite interpolation. 
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These functions have the following convenient properties: 

hi h2 h3 h4 
function value at s =0  1 0 0 0 
function value at s = 1 0 1 0 0 
derivative at s =0  0 0 1 0 
derivative at s = 1 0 0 0 1 

Note that h l alone determines the function value of the 
composite cubic at the start of the interval. Therefore, h l can 
be scaled with a coefficient of Pi to obtain the desired point P~ 
at s ~ 0 .  Similarly, h2 can be scaled with Pt+l. The derivative 
of the composite cubic is determined by h 3 at the start and by 
h4 at the end of the interval, therefore Dr and D~+l, the desired 
derivatives at the interval ends, can be used as scaling factors 
for h 3 and h4. These observations lead to a triplet of cubic 
polynomials given by 

p ( s )  = ( x ( s ) , y ( s ) , z ( s ) )  

= Pi.hl(S) + Pi+l'hz(s) + Di.h3(s ) + Di+l.ha(s ) 

Equation l. Parametric cubic curve using the h basis. 

In matrix form this expression reduces to 

P(s) = s-h.C 

[ $ 3 S 2 S 1 ]  " --3 
221,i  1 3 --2 --1 Pi+l 

0 0  l 0 I D I  1 
1 0 0 0 Di+l 

Equation 2. Matrix format for parametric cubics using the h basis. 

Note that the vector s only changes from one frame in the 
animation to the next. Within a given frame it applies to the x, 
y, and z components of all key positions which are being 
interpolated. The matrix h contains the coefficients of the 
Hermite  interpolation basis functions and is therefore constant 
for all frames and all key positions. In practice, s.h is calculated 
only once per frame. By contrast, each C, which is a 4×3 
matrix, corresponds to a single key position and is independent 
of the C associated with any of the other key positions being 
interpolated. It does not change from one frame to another 
(except at a key frame), and the independence implies that all 
key positions can be interpolated "in parallel". 

3. A General Class of Interpolating Cubic Splines 

Using this formulation as a framework, the remaining open 
question is how to find "appropriate" values for the components 
of D i and Dr+l, the tangent vectors at the key positions, needed 
to fully specify P(s). [10] describes the approach used for a 
class of cubic splines which are commonly called cardinal 
splines. Even though cardinal splines are not usually formulated 
in terms of the Hermite interpolation basis functions, the 
tangent vectors at the key positions are used to constrain the 
cubic segments. The tangent vector at P~ is calculated as 
Dr = a'(Pi+l--Pi-O, where a is a constant which affects the 
tightness of the curve. A particular example of this class of 

splines is the Catmull-Rom spline for which a = + .  Thus the 

tangent vector for the Catmull-Rom spline is 

1 1 

Equation 3. The Catmull-Rom spline. 

which is simply the average of the source chord P i -  Pi-l  and 
the destination chord P i + l -  Pi. The technique presented in this 
paper uses this average of adjacent chords as the default tangent 
vector. Thus our default spline, even though formulated 
differently, is exactly the Catmull-Rom spline (Figure 5). 

Figure 5. The Catmull-Rom spline. 

At the beginning of a motion sequence some arbitrary choice for 
the source chord (e.g. (0,0,0)) must be made. Similarly, the 
destination chord must be specified arbitrarily at the end of the 
sequence. Alternatively a specification of the tangent beginning 
and ending vectors can be made without regard to any chords. 
Setting D = (0,0,0) was tried with some success in [8]. 

A "standard" smooth motion through a given set of keys 
does not always produce the effect desired by the animator. In 
certain cases he may want the motion to follow a wider, more 
exaggerated curve, while in other cases he may want the motion 
path to be much tighter, maybe almost linear. Even continuity 
in the direction and speed of motion is not necessarily desirable 
at all times. Animating a bouncing ball, for example, actually 
requires the introduction of a discontinuity in the motion at the 
point of impact. 

The research described in this paper replaces the standard 
interpolating spline used in [8] by a highly flexible class of cubic 
splines which interpolate the same key positions but vary in 
several control parameters. These three parameters, tension, 
continuity and bias. allow the animator to fine-tune the 
animated sequence by changing certain characteristics of the 
"s tandard"  interpolating spline either locally (applying only in 
the vicinity of a specific key frame), or globally (applying to the 
entire motion sequence). The introduction of these three control 
parameters produces a highly flexible class of interpolating 
cubic splines which include the cardinal splines as a proper 
subset. 
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The concepts of tension and bias have been introduced 
before in connection with approximating splines in [2], [3], [4]. 
Our  use of the te rm "bias"  is similar to the concept being used 
by the authors  of these references. The concept of " tension" 
which we are using is different, however. Their  use of the  word 
" tension"  refers to an effect produced by adjust ing the match  
between the second derivatives of adjoining polynomial 
segments,  and we are exercising control only over first 
derivatives. We  are able to produce visually similar effects, 
however, and so have chosen to borrow the use of their term. 
An excellent introduction to the theory of interpolating and 
approximating splines for computer  animation can be found in 
[10]. 

The three control parameters  tension, continuity, and bias 
are introduced by the convention of separating each tangent  at 
the i th key position into an incoming and an outgoing part,  
respectively the source derivative DS i and the destination 
derivative DD~ as indicated in Figure 6. 

I 
I 
I 

DSi+ l 

DDi DDi + 1 

P i + l  

I 
I 

I 
I 

I 

DSi I 

I 
I 

Figure 6. Incoming and oui.going tangents of two key positions. 

These replace the single derivative D of the C a t m u l l - R o m  
1 

spline (Equation 3). Fur thermore,  the  average a = ~ -  of 

Equat ion 3 is relaxed in favor of a more selective average of the  
source and destination chord. 

In  the  following three sections we will treat each of these 
three parameters  independently of the other two. Then  the 
three will be tied together in a fourth section. 

3.1.  Tens ion  

The tension parameter  t controls how sharply the curve 
bends at a key position (Figure 7). 

TENSION 

Figure 7. Bending of the curve under various tensions. 

Tension is implemented  as a scale factor which changes the 
length of both the  incoming and outgoing parts of the tangent  
vector equally at a key position: 

DSi 1 ((P~+I--Pi)+(Pi--Pi-~)) = DD i = (l--t)'-~-" 

Equation 4. Tension equation. 

For the default  curve t =0 ,  and the tangent  vector is the average 
of the  two adjacent  chords (Figure 8). 

q~ - TENSION 

Figure 8. Default tension. 

Increasing the  tension to t = 1 reduces the  length of the tangent  
vector to zero and thus t ightens the curve (Figure 9). 

, ~ TENSION 

Figure 9. The effect of increasing the tension parameter. 
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Reducing  the tension to t = - 1  increases the tangent  vector to 
twice its default  length and produces more slack in the curve 
(Figure 10). 

l --TENSION 

Figure 10. The effect of reducing the tension parameter. 

If  the same value of t is applied to all key positions in the 
sequence,  varying t generates the entire class of cardinal splines 

1 - t  
with a = - - 7 -  (Figure 11). 

q) TENSION 

Figure 11. Several tension values applied uniformly to all keys. 

The default  case (t =0)  is equivalent to the Catmul l -Rom spline, 
1 

where a = --. 
2 

3.2. Continuity 

The principal reason for using splines in key f rame 
animation is to avoid discontinuities in the direction and speed 
of motion which are produced by linear interpolation. However, 
in animation discontinuities are sometimes necessary to create 
realistic effects such as punching,  bouncing, etc. A common 
technique to introduce such a discontinuity into an otherwise 
continuous spline is to repeat a key position or to simply 
terminate  the spline at a key and start  an entirely independent  
spline to interpolate the next sequence of key frames. 

Nei ther  of these approaches is very satisfactory because 
the discontinuity cannot be controlled. While it is true that,  
mathemat ica l ly  speaking, a spline's derivative is either 
continuous or discontinuous, the art ist 's  view is quite different. 
He would like to have more control over continuity than a 
simple on /o f f  switch. In fact, from the animator 's  point of view 
two curve segments  which have very different tangent  vectors at 
their joint appear "more  discontinuous" than two curve 
segments  which have fairly similar tangent  vectors. This 
concept is implemented in our system as a parameter  which 
controls the cont inui ty/discont inui ty at a key position (Figure 
12). 

~9 TENSION 

CONTINUITY 

Figure 12. The effect of varying the continuity parameter. 

Assuming  default  tension and using c to denote the continuity 
parameter ,  we allow the source and destination components of 
the tangent  vector to differ from each other according to: 

DSi = [ - ~ - - ~ - ' ( P i - P i - 1 ) +  l + c  p - ' ~ ' ( P i  +1 -- i)J 

Equation 5. The "incoming" continuity equation. 

Equation 6. The "outgoing" continuity equation. 

Note  that  with c = 0  (which we use as a default) we obtain 
DS i=DDi, which produces a spline with tangent vector 
continuity at the keys (Figure 13). 

~9 TENSION 
CONTINUITY 

Figure 13. Default continuity. 
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As I c I increases, the two tangent  vectors become increasingly 
distinct. When  c = - 1 ,  the source tangent  vector DS~ reduces to 
the source chord, and the destination tangent  vector DD i is the 
destination chord, producing a pronounced corner in the curve 
(Figure 14). 

Looking only at the  path of motion, the  effects of 
increasing the tension or reducing the continuity seem to be 
rather  similar (Figures 17 and 18). 

~L 

~9 TENSION 
l CONTINUITY 

Figure 14. The effect of decreasing the continuity parameter. 

Going in the opposite direction, at c = l ,  DS~ = P~+I--P~ and 
DDI ~ Pi--Pi_h produces a corner pointing in the  opposite 
direction (Figure 15). 

(~ TENS[0N 

(~ EONTINU/TY 

Figure 17. Default tension and continuity. 

- -  ~ TENSION 

........ ' ~ CONTINUITY 

Figure 15. The effect of increasing the continuity parameter. 

In Figure 16 some results of applying the same value of c to all 
key positions are depicted. 

, ~ TENSION 

, CONTINUITY 

Figure 18. Increasing tension, reducing continuity. 

However, the motion dynamics are quite different (Figure 19). 

~9 TENSION 
CONTINUITY 

Figure 16. Several continuity values applied uniformly to all keys. 

I.."-.L 
I I~ 9 TENS[0N 

''°" ° I 

CONTINUITY 

Figure 19. Differences in motion: tension vs. continuity. 
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Increasing the tension does not  introduce discontinuities in the 
velocity. Instead the length of the tangent vector, and therefore 
the speed, is eventually reduced to zero. By contrast, reducing 
the continuity produces an abrupt change in the direction of 
motion at the key position while the speed remains constant. 
This effect is often necessary to create realistic animation. For 
example, to make the movement of a ball careening off a tree 
look convincing, the animator must introduce a sharp corner in 
the path as the ball hits the tree. Increasing the tension would 
produce a corner in the path, but the speed at this corner would 
be zero, resulting in a dece lera t ion  before the ball actually hits. 
Reducing the continuity would produce the desired abrupt 
change, with the ball altering its direction of motion at the point 
of impact without slowing down ahead of time. 

Generating the appropriate motion dynamics is extremely 
important in animation. If we look only at the motion path, the 
use of maximum tension appears to generate a discontinuity. 
However, this effect is simply a geometr ic  discontinuity. What 
is needed in the case of the bali's encounter with the tree is a 
p a r a m e t r i c  discontinuity, a sudden change in the magnitude 
and/or direction of the velocity. This effect cannot be achieved 
by changing the tension because the tangevt vector will always 
remain continuous under such a change, thus guaranteeing 
parametric continuity. 

3.3 .  Bias  

The bias parameter b controls the direction of the path as 
it passes through a key position (Figure 20). 

i TENSION 
[~ CONTINUITY 
~P , , Bins 

Figure 20. The behaviour of a curve under changing bias. 

Both incoming and outgoing parts of the tangent are formed as 
an average of the incoming and outgoing chords, but the bias 
assigns different weights to the two chords when forming the 
average. Assuming default tension and continuity (t =c =0), the 
tangent vector is given by: 

1 +b 1~2  b.(Pi+l DS i = DDi = - - ' - f ' - ' (Pi - -P~- l )  + 

Equation 7. The bias equation. 

Note that with b=0  the two chords are weighted equally, and 
we obtain the default spline shown in Figure 21. When b = - - l ,  
the tangent vector is completely determined by the destination 
chord (Figure 22), 

~P 
P TENSION 

CONTINUITY 
qP Bins 

Figure 21. Default bias. 

q? ¢ TENSION 
CONTINUITY 

, B I R 5  

Figure 22. Bias set to -1. 

whereas with b ~ l  it is completely determined by the source 
chord (Figure 23). 

P TENSION 

CONTINUITY 

I ~ - B I A 5  

Figure 23. Bias set to + 1. 

The bias parameter easily simulates the traditional animation 
effect of following through after an action by "overshooting" the 
key position (b= l ) ,  or exaggerating a movement by 
"undershooting" a key position (b = -  1). 
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3.4. Composite Control 

Combining the tension, continuity, and bias control 
parameters we obtain the following general equations for the 
source and destination tangent vectors at the key position P~: 

D S  i = ( 1 - - t ) ' ( 1 - - c ) ' ( l + b )  . ( p t - - p i _ l  ) 
2 

+ ( 1 - - t ) . ( l + c ) ' ( l - - b )  . (PI+I--Pt) 
2 

Equation 8. The "incoming" composite equation. 

( 1 - t ) . ( l + c ) . ( l + b )  . ( P J - P i - O  
DDi = 2 

+ (l--t).(1--c).(1--b) . (P~+~--PD 
2 

Equation 9. The "outgoing" composite equation. 

The spline segment between P~ and P~+I can now be defined in 
terms of Pi,  P~+~, D D  i, and DS~+~. All inbetween positions 
within this interval can then be generated by using Equation 2, 
varying the interpolation parameter s from 0 to 1 over the 
interval. 

4. Adjustments for Parameter Step Size 

If we assume default continuity (c = 0) at key P;, the spline 
segment between Pi and Pi+l should join smoothly with the 
segment used between Pi-1 and Pi. While this is true when 
looking only at the path of the motion, it may not necessarily be 
true for the speed of motion. The formulas given in Equation 8 
and Equation 9 assume an equal time spacing of key frames, 
implying an equal number of inbetweens within each key 
interval. A problem can exist if the animator requests a 
different number of inbetweens for adjacent intervals. Consider 
the case where 10 inbetweens are supposed to be generated in 
the interval from P,-I to P;, but only 5 inbetweens between Pi 
and Pt+l as was shown in Figure 2. In the first interval, the step 

size for the interpolation parameter s will be A~ = ~ whereas 

1 
for the second interval the step size will be A2 = ~ .  If the 

same parametric derivative is used for both splines at P~, these 
different step sizes will cause a discontinuity in the speed of 
motion. What is required, if this discontinuity is not intentional, 
is a means of making a local adjustment to the interval 
separating successive frames before and after the key frame so 
that the speed of entry matches the speed of exit. This can be 
accomplished by adjusting the specification of the tangent 
vector at the key frame based on the number of inbetweens in 
the adjacent intervals. In practice this turns out to be very 
simple, because we have already made provisions for two 
distinct tangent vectors at each key position in order to 
accommodate the continuity control parameter. Once the 
tangent vectors have been found for an equal number of 
inbetweens in the adjacent intervals, the adjustment required for 
different numbers of inbetweens (N~_~ frames between P~_~ and 
Pl followed by Nj frames between P~ and Pt+l) can be made by 
weighting the tangent vectors appropriately: 

2"Ni -1  
adjusted DDj = DDi • - -  

N i - l  + N i  

2"Nt 
adjusted DSi  = DSi  • - -  

Equation 10. Adjustment for parameter stepsize. 

5. Current Experience and Future Developments 

The tension, continuity, and bias parameters were designed 
to correspond closely to traditional animation effects. These 
ideas were tested and refined using a simple interactive spline 
display package. In one test we asked the animators to 
interactively modify the three control parameters until a spline 
passing through a set of key positions looked "natural" to them. 
We found that most animators left the continuity and bias at 
their defaults (c=0,  b=0)  but reduced the tension parameter. 
The tension values which animators considered to produce a 
"natural" looking curve for a given set of keys ranged from -0.1 
to -0.4. It was interesting to note that while there was some 
disagreement between animators about the "best" tension value, 
each animator was surprisingly consistent in his choice. 

These individual preferences are most likely related to 
differences in personal style. For example, some animators tend 
to animate movements more tightly (larger tension value) than 
others. This indicates that the tension is especially useful as a 
global default parameter which the animator can define 
according to his style preference. The continuity and bias 
parameters are mostly used in a local context, i.e. to achieve a 
particular effect at a specific key position. In practice, a small 
number of parameter combinations will probably be sufficient 
for most sequences. Several animators noted that the system 
should include but not be limited to a small set of predefined 
effects (e.g. "overshoot": t=-0.3, c=0 ,  b =  1). They still wanted 
to have the full power and flexibility of the three independent 
parameters available for more advanced users. 

The algorithm described in this paper is currently being 
implemented at the National Film Board of Canada (free-form 
drawn 2-D and 2 1/2-D multiplane key frames) and the 
University of Waterloo (3-D key positions with skeleton control). 
These implementations will be used to test various user interface 
strategies for both inexperienced and advanced users. 

6. Summary 

The introduction of tension, continuity, and bias control 
produces a very general class of interpolating cubic splines. The 
flexibility which these parameters provide is especially useful in 
key frame animation, because it allows the animator to adjust 
the movement of objects without having to adjust or redraw the 
key frames (Figure 24). 

- '- '-7---, 

, - - T - -  
[ 

- - - - T - -  

Figure 24. The effect of various parameter settings used together. 

We have provided these control parameters by a simple 
technique of separating the tangent vector at each key frame 
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into an incoming and an outgoing part and specifying these parts 
as a weighted average of the chords defined by the nearest 
neighbor key frames. Our system has the additional benefit that 
it can make adjustments to overcome speed discontinuities when 
the number of inbetweens is changed between key frames. 
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